返回主站 | 设为首页 | 加入收藏      
   
 
  首页 关于我们 产品展示 方案设计 技术分享 行业资讯 联系我们  
 
无线收发IC
2.4G无线收发IC
315MHz/433MHz无线遥控器发射接收IC
功放IC
电源管理IC
马达驱动IC/步进电机控制芯片
数模(DAC)/模数(ADC)转换芯片
智能处理器
音量控制IC
模拟开关IC
电容式触摸感应IC
RGB LED呼吸趣味灯驱动IC
音频CODEC IC
方案设计
电压电平转换器IC
运算放大器
I/O扩展器IC
 
名称:
种类:
类别:

业务洽谈:

联系人:张顺平 
手机:17727550196(微信同号) 
QQ:3003262363
EMAIL:zsp2018@szczkjgs.com

联系人:鄢先辉 
手机:17727552449 (微信同号)
QQ:2850985542
EMAIL:yanxianhui@szczkjgs.com

负责人联络方式:
手机:13713728695(微信同号) 
QQ:3003207580 
EMAIL:panbo@szczkjgs.com
联系人:潘波

 
当前位置:首页 -> 方案设计
安富利:LE Audio技术将撬动无线音频市场
文章来源:永阜康科技 更新时间:2021/6/29 11:31:00

蓝牙技术自4.0版本之后就分成了两支:低功耗蓝牙BLE作为后起之秀,借了物联网的东风,发展得风生水起,成为可穿戴等众多物联网创新应用的标配;而经典蓝牙(BT)则固守着音频和高速数据传输这个蓝牙技术传统的根据地,过得不温不火。

而近四五年,经典蓝牙在音频传输领域迎来了一波新的增长高潮,这主要是拜苹果的AirPods所赐,这个成功的产品带旺了一个全新TWS真无线立体声耳机产品品类。据Counterpoint的市场研究数据,2021年全球TWS耳机市场将同比增长33%,达到了3.1亿部。

TWS的困境

不过随着越来越多人进入TWS这个领域,大家也越来越深刻地体会到,经典蓝牙为TWS留下的“坑”有多深——在很多方面,原有的经典蓝牙音频传输标准已经不能适应TWS的发展要求,其中主要的槽点有两条:

一是编码技术有局限性。经典蓝牙采用SBC编码技术,在初期传输个电话语音还可以,但是面对音乐播放等用户体验要求高的音频应用,其效率低、音质差的弱点就暴露出来了,所以蓝牙耳机的音质在人们传统的认知中,不过是“听个响”而已。提升音质也不是没有办法,这需要借助于其他专有的编码解决方案,如AC3和AptX编码等,但是制造商和用户不得不为此付出额外的硬件成本和技术授权费用,这显然不是最佳的方案。

二是双耳同步太难。经典蓝牙只能支持A2DP配置文件上的单个点对点音频流,而TWS则需要将音频传输到两个分立的耳机中,为此传统的解决方案是先将音频传输到一侧的耳机(主机),再通过这个主机连接到另一侧的耳机(副机)。但是这种主副机的TWS方案有明显的弱点:一是主机作为信号中继,功耗会更高、老化会更快,这会造成两侧耳机续航、使用寿命的差异;二是两侧耳机音频不同步,手机画音延迟太大——这对于视频党和游戏党来说无疑是一个致命的缺陷。

为了解决双耳音频不同步的问题,各个TWS厂商也都在积极想办法。苹果通过专有的监听方案在AirPods上很好地解决了这个问题,但是其构筑的严密的专利壁垒使得其他后来者望而却步。近年来,众多的双耳连接方案也有长足的进步,但是这些协议和实现方案毕竟不是“一家人”,兼容性方面的问题难免让人头疼——比如高通TWS+方案就只支持骁龙845以上的手机平台。

可见,上面所有的“填坑”努力,不过是在原有蓝牙标准上的修修补补,难言完美。解铃还须系铃人,根本解决问题,将经典蓝牙音频传的“坑”填上,还需要从蓝牙标准上下功夫。

LE Audio标准驾到

这样的诉求SIG显然也是心知肚明,于是在2020年初推出的蓝牙5.2标准版本中,终于放出了大招儿——推出了LE Audio技术。从这个技术的名称就可以看出,它是要通过BLE连接(而不是经典蓝牙)提供音频传输,在秉承BLE低功耗特性的基础上,全面提升用户的无线音频体验。

如果说之前蓝牙技术的发展,BLE和经典蓝牙由于应用场景的差异,像是两条平行线,现在LE Audio使得两者产生了交集,而且大概率要去动经典蓝牙音频传输的“奶酪”了。因此,有业界人士评价,这将是“蓝牙历史上最大的开发工作成果之一”。

那么这个备受瞩目的LE Audio技术,它究竟神奇在哪儿?仔细观察,这主要得益于其三个新增加的技能。


图1:LE Audio中采用的三个关键技术(图源:SIG)

第一,低复杂度通信编解码器(LC3)

这一全新的高音质、低功耗音频编码器,具有在低速率条件下提供高音质的特性,同时它还支持广泛的采样率、比特率和帧率,开发者可以根据需要进行灵活地调整,优化产品,为用户提供最佳的音频体验。
下图中将LC3和经典的SBC编码器进行了比较,纵轴表示了基于ITU-R BS.1116-3规范的编码压缩后的音频损伤标度——5表示与原始音频源无差异,4表示有明显的差异但可接受,3表示有特别明显的差异。可以看出,LC3的优势十分明显,即使是比特率降低50%,仍可以提供不错的音频体验。

不夸张地讲,LC3让蓝牙音频有了在低功耗的前提下,向HiFi体验看齐的资本。


图2:LC3与SBC音频编码方案的比较(图源:SIG)

第二,多重串流音频(Multi-Steam Audio)技术

可以说,这个技术就是为解决TWS音频不同步问题而量身定制的,它可实现在智能手机单一源设备(Source Device)与单个或多个音频接收设备(Sink Device)间同步进行多重且独立的音频串流传输。也就是说,多重串流音频技术可以同时将音频流发送到TWS的两个耳机,提供更好的立体声体验,并使得多台音源设备之间的切换更顺畅,而且这是一个开放的技术标准!难怪该技术一经公布,“终结AirPods垄断”的预言就不绝于耳。

第三,广播音频(Broadcast Audio)技术

如果说前两个新技术的推出,是要用LE Audio去解决TWS遇到的现实问题,那么广播音频技术就是要为LE Audio的未来打开更大的想象空间。

基于广播音频技术,可以由单一音频源设备向不限数量的音频接收设备广播一个或多个音频串流,一种通俗的理解就是“音频分享”。而且这种分享可以基于个人,也可以基于位置,应用场景广泛而灵活。一些我们可以直接想见的应用就包括:

• 个人音乐分享:让多位朋友们同时欣赏一部手机(或音频源设备)上的音乐。
• 公共辅助收听:在剧院或博物馆,多用户听过蓝牙耳机收听戏剧对白或展品讲解。
• 公共电视/教学:健身教练通过蓝牙耳机向目标学员进行教学,或者是广场舞音乐不必再大分贝外放,而是通过耳机传输给每一位“大妈”。
• 多语言通告:利用多个音频串流,实现国际会议中的多语种同传,或是飞机上的多语言广播。
按照这个思路扩展下去,后续广播音频技术的脑洞还会开得更大。


图3:未来蓝牙音频应用将持续增长(图源:SIG)

目前,各方势力围绕LE Audio的布局已经展开,预计2022年新版的安卓系统中将支持LE Audio功能,而相关的芯片研发工作也紧锣密鼓地进行中。预计在LE Audio进入市场初期的几年中,同时支持LE Audio和经典蓝牙音频的双模芯片将是主流,后续随着LE Audio渗透率的提升以及新应用场景的拓展,单模 LE Audio芯片也将陆续登场。

总之,未来从蓝牙耳机或者其他无线音频设备中流出的好声音,越来越多地都会贴上LE Audio的标签。

关于安富利公司

安富利是全球领先的技术分销商和解决方案提供商,在过去一个世纪里一直秉持初心,满足客户不断变化的需求。从构思到设计,再从原型创建到生产,安富利可在产品生命周期的每个阶段为客户提供支持。安富利在整个技术价值链中处于中心位置。这种独特的地位让安富利能够在产品开发过程中加快设计和供应速度,从而帮助客户尽快实现营收。数十年如一日,安富利一直致力于帮助全球客户和供应商实现技术的变革。

 
 
 
    相关产品  
8022WS/RM1202A(单键LED台灯触摸调光芯片)
HTR3212(12路RGB LED驱动芯片)
IS31FL3236/SN3236/HTR3236(36路RGB LED呼吸趣味灯驱动IC)
IS31FL3729/HTR3229(支持16x8或者15x9矩阵、点阵、阵列LED驱动器IC)
AW9523/HTR3316(I2C接口、16路LED呼吸灯驱动器和GPIO控制器 )
IS31FL3218/SN3218/HTR3218(18路RGB LED呼吸趣味灯驱动IC)
VAS5189(集成同步升压、4.2A锂电池充电管理、4段LED电量指示的移动电源管理IC)
VAS5185(集成同步升压、3A锂电池充电管理、4段LED电量指示的移动电源管理IC)
BP3108/HC3108(可控硅调光原边反馈LED控制IC)
A96010(带LED典型状态/电池充饱百分比显示的锂电充电管理IC)
 
深圳市永阜康科技有限公司 粤ICP备17113496号  服务热线:0755-82863877 手机:13242913995