返回主站 | 设为首页 | 加入收藏      
   
 
  首页 关于我们 产品展示 方案设计 技术分享 行业资讯 联系我们  
 
无线收发IC
2.4G无线收发IC
315MHz/433MHz无线遥控器发射接收IC
功放IC
电源管理IC
马达驱动IC/步进电机控制芯片
数模(DAC)/模数(ADC)转换芯片
智能处理器
音量控制IC
模拟开关IC
电容式触摸感应IC
RGB LED呼吸趣味灯驱动IC
音频CODEC IC
方案设计
电压电平转换器IC
运算放大器
I/O扩展器IC
 
名称:
种类:
类别:

业务洽谈:

联系人:张顺平 
手机:17727550196(微信同号) 
QQ:3003262363
EMAIL:zsp2018@szczkjgs.com

联系人:鄢先辉 
手机:17727552449 (微信同号)
QQ:2850985542
EMAIL:yanxianhui@szczkjgs.com

负责人联络方式:
手机:13713728695(微信同号) 
QQ:3003207580 
EMAIL:panbo@szczkjgs.com
联系人:潘波

 
当前位置:首页 -> 方案设计
用于宽范围光电二极管的跨阻抗放大器具有苛刻的要求
文章来源: 更新时间:2015/5/26 9:50:00
光电二极管广泛见诸于众多的应用,其用于把光转换为随后可在电子电路中使用的电流或电压。此类应用从太阳能电池到光数据网络、从高精度仪器到色层分析再到医疗成像等均在其列。所有这些应用都需要用于对光电二极管输出进行缓冲和调节的电路。对于那些需要高速和高动态范围的应用,通常采用如图 1 所示的跨阻抗放大器 (TIA) 电路。在该图中,反馈电容显示为一个寄生电容。对于许多应用来说,这是一个为确保稳定性而有意布设的电容器。

图片1

图 1:跨阻抗放大器

该电路让光电二极管处于“光电导模式”,并在其负极上施加了一个偏置电压。两个运放输入之间的虚拟连接把正极保持在地电位,从而在该光电二极管的两端施加了一个恒定的反向偏置电压。可以把光电二极管看作是一个电流源 (与光强成比例)、一个电容器、一个大的电阻器和一个所谓暗电流的全并联连接。二极管两端的偏置电压越大,光电二极管电容往往会变得越小。虽然这对速度有益,但在实际中则受限于光电二极管承受大反向电压的能力。

由光电二极管产生的电流 (IPD) 被 TIA 电路放大,并通过跨阻抗增益电阻器 (这里也称为反馈电阻器,即 RF) 转换为一个电压。理想的情况是,该电流全部流过 RF (即:IFB = IPD),然而实际上,放大器会以运放输入偏置电流的形式“窃取”部分该电流。此偏置电流在输出端上产生一个误差电压并限制了动态范围。增益电阻器越大,这种影响就越厉害。应选择具有足够低偏置电流 (以及输入失调电压和输入失调电压漂移) 的放大器以实现所需的动态范围和总体准确度,这一点是很重要。

另一个考虑因素是运放输入电流随温度变化的影响。采用双极性输入级的运放具有相当恒定的输入电流。但是该电流即使在室温条件下也是非常高 (达到 nA 甚至 µA 级),因而导致无缓冲双极放大器不适合很多高跨阻抗增益应用。为此,相比于双极放大器,人们通常优先选择具有一个 FET 输入级的运放,因为它们天生具有较低的输入电流,在室温条件下常常为个位数 pA 或更低。但是,输入 ESD 保护二极管在变热时会发生泄漏,从而造成输入电流随温度呈指数性上升。一个在室温下具有 pA 级偏置电流的运放在 125°C 时输入电流达到 nA 级的情况并不少见。本文稍后将介绍一款通过 ESD 二极管的自举来解决该问题的运放。另一种可选方案是使用一个分立的 FET 在放大器输入端上对光电二极管进行缓冲,但这需要一个额外的组件 (相应地占用电路板空间),而且具有相对较高的输入电容。

由于动态范围是最大输出信号与噪声之比,因此应选择具有足够低噪声的运放,这一点很重要。运放的电流噪声和电压噪声均至关紧要,其影响程度的高低取决于 RF 和 CIN 的数值。输入电容 CIN (见图 2) 是光电二极管电容、放大器输入电容和电路板杂散电容的组合。在跨阻抗放大器电路中,电流噪声与 RF 相乘,因而使噪声表现为一个输出电压误差。另外,放大器的电压噪声与噪声增益相乘。因此,对于较高的 RF 值,电流噪声 (in) 变得更具支配作用,而对于采用高 CIN 的电路,则电压噪声 (en) 居主导地位。想找到一款兼具低电流噪声和低电压噪声的运放会是一件十分棘手的事。

图片2

图 2:输入电容包括传感器、电路板和放大器电容

此外,输入电容还限制了带宽。有关于此的一种思考方法是:把输入电容器的阻抗看作是传统负输出运放配置中的增益电阻器 (RG)。该电容器越大,则阻抗越小,而且运放“承受”的有效增益 (1 + RF/RG,常被称为噪声增益) 越大。由于放大器的带宽与增益之间成反比关系 (因增益带宽乘积的恒定特性之故),因此这意味着大的输入电容将限制电路带宽。对此也可以从稳定性的角度来思考。运放输入端上的电容会在频域中产生一个极点,或在时域中产生一个延迟。通过增设一个 (有意的,而不是寄生的) 反馈电容器 (CF),可对该极点进行补偿以使电路稳定。该电容越大,对电路带宽的限制也就越大。因此,应选择一个具有低输入电容的放大器,并谨慎地进行电路板的布局以消除杂散输入电容和反馈电容,这一点很重要。请参见 LTC6268 产品手册的第 14 页和第 15 页,以了解一些用于减小杂散反馈电容的实用主意,这些举措在实践中可使电路带宽改善 4 倍以上。

具有 fA 级偏置电流的新型运放 LTC6268 是针对本文所述的高速、高动态范围光电二极管电路所需之性能而优化的放大器范例。其利用片内 ESD 保护二极管的自举实现了极低的输入电流。通过创建输入电压的一个缓冲“副本”并将之馈入分离的 ESD 二极管,可在正常操作期间将二极管电压和电流保持在极低的水平。结果是:在 85°C 和 125°C 温度条件下分别提供了 0.9pA 和 4pA 的保证最大输入电流。典型输入电流性能示于图 3。虽然该电流仍然随温度的升高而增大,但是与其他放大器相比其增幅低了几个数量级。LTC6268 提供了 500MHz 增益带宽,从而实现了 LTC6268 产品手册中所示的单级电路 (从 20kΩ 跨阻抗增益和 65MHz 带宽至 499kΩ 跨阻抗增益和 11.2MHz 带宽)。由于只采用了 0.45pF 输入电容,因此在总的电路电容中 LTC6268 只占了很小的一部分,因而保持了高带宽。LTC6268 的输入参考电压和电流噪声分别为 4.3nV/√Hz (在 1MHz) 和 5.5fA/√Hz (在 100kHz)。而且,LTC6268 的宽带宽、低失真和高摆率使其适合于高速数字化应用。

图片3

图 3:LTC6268 的输入偏置电流在整个温度范围内保持低水平

尽管市面上销售的运放数以百计 (假如不是数以千计的话),然而要找到一款用于高速、高动态范围光电二极管电路的合适跨阻抗放大器却是非常具挑战性。每个电路都有其一组独特的性能特征要求,包括极低的输入偏置电流和输入电流温度漂移、高速度 (例如:增益带宽乘积和摆率)、低电压和电流噪声的正确平衡、以及低输入电容。另外,还应特别谨慎地对待电路板布局,以最大限度地减小将会对电路的准确度和速度产生限制的漏电流和杂散电容。LTC6268 代表了一种针对高性能 TIA 应用而优化的新型运放。

 
 
深圳市永阜康科技有限公司 粤ICP备17113496号  服务热线:0755-82863877 手机:13242913995