一般最常见的储存电容架构有两种,分别是Cs on gate与Cs on common这两种。顾名思义,两者的主要差别在于储存电容是利用gate走线或是common走线来完成。在上一期文章中曾提到,储存电容主要是为了让充好电的电压能保持到下一次更新画面的时候之用,所以必须像在CMOS的制程之中,利用不同层的走线来形成平行板电容。而在TFT LCD的制程中,则是利用显示电极与gate走线或common走线所形成的平行板电容,来制作出储存电容Cs。
图1就是这两种储存电容架构,图中可以很明显地知道,Cs on gate由于不必像Cs on common需要增加一条额外的common走线,所以其开口率(Aperture ratio)比较大。而开口率的大小是影响面板的亮度与设计的重要因素,所以现今面板的设计大多使用Cs on gate的方式。但是由于Cs on gate方式的储存电容是由下一条的gate走线与显示电极之间形成的(请见图2中Cs on gate与Cs on common的等效电路),而gate走线就是接到每一个TFT的gate端的走线,主要是作为gate driver送出信号来打开TFT,好让TFT对显示电极作充放电的动作。所以当下一条gate走线送出电压要打开下一个TFT时,便会影响到储存电容上储存电压的大小。不过由于下一条gate走线打开到关闭的时间很短(以1024 x 768分辨率,60Hz更新频率的面板来说。一条gate走线打开的时间约为20μs,而显示画面更新的时间约为16ms,所以相较下影响有限),所以当下一条gate走线关闭,回复到原先的电压,则Cs储存电容的电压,也会随之恢复到正常。这也是为什么大多数的储存电容设计都是采用Cs on gate的方式的原因。
从图3中可以看到整片面板的等效电路,其中每一个TFT与Clc跟Cs所并连的电容代表一个显示的点。而一个基本的显示单元pixel则需要三个这样显示的点,分别代表RGB三原色。以一个1024 x 768分辨率的TFT LCD来说,共需要1024 x 768 x 3个这样的点组合而成。整片面板的大致结构就是这样,然后再藉由如图3中gate driver所送出的波形,依序将每一行的TFT打开,好让整排的source driver同时将一整行的显示点充电到各自所需的电压,以显示不同的灰阶。当这一行充好电时,gate driver便将电压关闭,然后下一行的gate driver便将电压打开,再由相同的一排source driver对下一行的显示点进行充放电。如此依序下去,当充好了最后一行的显示点,便又回过来从头从第一行再开始充电。
以一个1024 x 768 SVGA分辨率的液晶显示器来说,总共会有768行的gate走线,而source走线则共需要1024 x 3=3072条。以一般的液晶显示器多为60Hz的更新频率来说,每一个画面的显示时间约为1/60=16.67ms。由于画面的组成为768行的gate走线,所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7μs。所以在图3 gate driver送出的波形中,就可以看到这些波形为一个接着一个宽度为21.7μs的脉波,依序打开每一行的TFT。而source driver则在这21.7μs的时间内,经由source走线,将显示电极充放电到所需的电压,好显示出相对应的灰阶。